简介
本书试图完成多学科信息研究的综合。作者罗伯特·洛根虽是物理学教授,却在大跨度的理工人文社科里穷究“信息”一词的不同含义和功能,令人震惊。本书论及信息论、控制论、物理学、生物学、心理学、人类学、心理学、语言学的新知成果,探索信息在生物域、符号域、技术域和经济域里的作用。
作者介绍
罗伯特·洛根,加拿大物理学家、传播学家,是麦克卢汉思想圈子的核心成员、媒介环境学派第二代代表人物,从事跨学科研究,曾担任加拿大前总理皮埃尔·特鲁多的科学顾问。其著作范围横跨物理学、传播学、生物学、环境科学、语言学等,著有《字母表效应:拼音文字与西方文明》《理解新媒介:延伸麦克卢汉》《被误读的麦克卢汉:如何矫正》《第五语言:学会在计算机时代生存》《第六语言:学会在互联网时代生存》《物理学的诗学》《什么是语言?》《图书馆的未来》等。
部分摘录:
通过热力学去理解引擎的效率,这样的探索使T.克劳修斯(T. Clausius)提出“熵”的概念,将其作为能量的机械不可用性的计量,或不能转化为可用功的计量。他用的德语词是Verwandlungsinhalt(译为英语大致是“转化内容”)。随后,他又新造一个词“熵”,用希腊词τροπ(trope)比喻,意为转化,再加上前缀“en”,生成entropy,因为他觉得,energy和entropy两个词联系密切。从entropy的词源看,我们大致可以将其译为“能量转化”。他觉得有必要界定“熵”,因为宇宙的能量保存下来,熵却在不断增加。
熵和概率的关系是玻尔兹曼(Boltzman)统计力学的研究成果,这是为审视热力学另辟蹊径。玻尔兹曼研究认为,气体的熵与W的对数成正比,W是热力学变量压力、温度和容量的等量价值。在玻尔兹曼推导的公式S=k ln W里,k是玻尔兹曼常数,给香农灵感,使香农用“信息熵”来表达讯息的信息内容计量,虽然符号和事实有差异:比例常数即玻尔兹曼常数具有能量÷温度的物理维度。
物理学家提出的熵和信息的关系产生于对麦克斯韦妖(Maxwell’s demon)的思考,与香农提出的关系是对立的。1867年,麦克斯韦设计了一个理想实验与香农的信息概念对立:一个妖怪站在充满气体的两个屋子之间的门口,容许快速移动的分子从一间屋进入另一间屋,造成两间屋的温差,如此,可做功就可以从违背热力学第二定律中获取。
1929年,利奥·西拉特(Leo Szilard)分析麦克斯韦妖造成的问题:为了获得所需的信息,这个妖怪使其他地方的熵增值,以便使净熵值不减少。他指出,该妖怪只能暂时减少熵,因为它拥有信息,而抓取信息的代价是熵的增值。这并不违背热力学第二定律,因为信息的获取使熵的增值大于信息所表示的熵的减少。西拉特的分析使人必然得出这样的结论:熵和信息是对立的。他还指出,麦克斯韦妖并不是正面的,这是因为它获取信息的办法是:挑选快速运动的分子、把慢速运动的分子拒之门外。既然信息获取的代价是熵的增值,信息就产生净负熵。西拉特之后,吉尔伯特·N.路易斯也发现信息和熵的相反关系。他写道:“熵的增加总意味着信息的减少。”(Gilbert N. Lewis 1930,p. 573)
薛定谔(1944,pp. 71—72)也明确引入了负熵的概念:
每一个过程或事件——无论你称之为什么——自然界运行的一切都意味着它所在场所里熵的增加。因此,有机体不断增加其熵值,即产生正熵,倾向于接近最大值熵的危险状态,即死亡的状态。只有不断从环境吸取负熵,它才能超然于这个危险的状态,才能生存——一望而知,这必然是正面的状态。有机体赖以生存的东西是负熵。如果不那么自相矛盾地说,基础代谢的精髓是:在其生存期间,有机体成功地摆脱它不得不生成的熵(第六章)。
维纳(1950)和里昂·布里渊(Leon Brillouin 1951)都采纳了香农给信息的定义及其与熵的关系,唯一的例外是其中对符号的定义,这大概是受到西拉特(1929)和薛定谔(1944)影响的结果。
维纳写道:信息是“负熵”;它表达目的(1948)。
讯息本身是一种形式和组织。实际上,把讯息视为包含熵的集合,就像外部世界里状态的集合一样,这是可能的。就像熵是组织解体的计量一样,一组讯息所含的信息是组织解体的计量。实际上,把讯息所含的信息解读为其熵的负值,解读为其概率的负对数,也是可能的。换言之,讯息的概率越大,它送出的信息就越少(p.39)……这种信息量不同于代数符号和可能的数值因子表示的熵。
布里渊(1951)还写道,生命系统输出熵以维持自身熵的低水平。他用“negentropy”而不是用“negative entropy”来表达“负熵”,描绘信息。
维纳和布里渊把熵和信息视为对立现象,把信息视为负熵,其理由源于自然界的一个趋势:系统移入较大的无序状态,即增熵的状态,因而含有较少信息的状态。考虑这样一个系统,其状态含有限的形貌或微状态,而所有微状态又相当于其宏观状态。根据热力学第二定律,自然的趋势是:相当于系统宏观状态的微状态数量要增加。因为微状态随着时间的推移增加,所以我们不知道系统处于哪一种状态;随着微状态数量的增加,我们对系统的了解随之减少。因此,随着熵的增加,系统的信息量随之减少,所以熵是负信息,信息是负熵。换言之,热力学第二定律告诉我们:系统A演变为系统B时,系统B拥有的冗余或同等微状态就多于系统A;既然系统所处的不确定性增加,我们对系统的了解就随之减少。
维纳和布里渊用负号表示信息和熵的关系,相反,香农用正号表示两者的关系。
凯瑟琳·海尔斯(Katherine Hayles 1999,p. 102)指出,这样的区分虽然有点武断,却产生了耐人寻味的冲击。注意到香农所用的正号,她指出:“把熵等同于信息的想法可以被视为关键的交叉点,因为这使人把熵重新构想为热力学引擎,驱动系统走向自组织,仿佛是把熵视为驱动世界走向死亡的热机。”至于对维纳的评述,她写道:“生命是负熵的一座孤岛,位于无序的汪洋大海中。”(1999,p. 102)
尽管香农和维纳赋予信息的符号有所不同,而香农受到维纳著作的重要影响,表现在他(1948)对维纳思想的谢辞中:“我还要感谢维纳教授,他对平稳集(stationary ensembles)过滤和预测问题的优雅解决方案在这个领域里对我产生了重大的影响。”他还在该谢辞第三部分的一个脚注里表示对维纳的感谢:
通信理论在基本哲学和理论上都深受维纳的影响。他那篇经典的NDRC报告《平稳时间序列的内插、外推与平滑》(The Interpolation,Extrapolation and Smoothing of Stationary Time Series. Wiley,1949)率先提出明晰的通信理论,将其视为统计学问题、时间序列的运行研究问题。虽然那篇报告主要研究线性预测和过滤问题,但和我们这篇文章形成重要的并行关系。在这里,我们还要提及维纳的《控制论》(Cybernetics. Wiley,1948),他那本书论述通信和控制的一般问题。